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1. Introduction

Observations of new physics at the Large Hadron Collider will come from the analysis of

many scattering processes with complex final states. It is essential to prepare the theoretical

groundwork by performing precision calculations of Standard Model production processes

incorporating at least next-to-leading order QCD corrections. This effort requires efficient

algorithms for computing multi-leg one-loop amplitudes.
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The unitarity method introduced in [1] is designed to compute amplitudes by applying

a unitarity cut to an amplitude on one hand, and its expansion in a basis of master integrals

on the other [2 – 5]. From knowledge of the basis and the general structure of the coefficients

in the expansion, the coefficients can be constrained.

The holomorphic anomaly [6] reduces the problem of phase space integration to one

of algebraic manipulation, namely evaluating residues of a complex function. By applying

this operation within the unitarity method, coefficients can be extracted systematically.

The reason this is possible is that the unitarity cuts of master integrals are uniquely identi-

fiable as analytic expressions. Accordingly, a method was introduced to evaluate any finite

four-dimensional unitarity cut and systematically derive compact expressions for the coeffi-

cients [7, 8]. The evaluation was carried out in the context of the spinor formalism [9 – 14].

In [15], we wrote down these general, compact formulas for master integral coefficients.

The main purpose of the present paper is to improve upon those formulas in two

respects. First, the coefficients were written as residues of the explicit formulas in [15].

Identifying the residue of a function simply involves performing a series expansion, but

within the spinor formalism, this expansion is not very transparent in the case of multiple

poles. Additional instructions were given to aid in automatizing this step. Here, our

formulas will be given in terms of a truncated series expansion in a single scalar variable.

Second, the starting point of the formulas of [15], from which to take input data, was the

result of some spinorial manipulations of the initial cut integrand. Here, the input data are

determined directly from the initial cut integrand, as assembled from tree-level amplitudes.

In this paper, we have thus eliminated the need for applying any analytic spinor iden-

tities. Programming the final formulas is completely straightforward. The values of the

coefficients are of course identical to those from the formulas of our previous paper. Other

general expressions for coefficients derived from unitarity cuts and generalized unitarity

cuts of one-loop amplitudes have been given in [16 – 20].

Starting from analytic expressions for color-ordered tree amplitudes, we set up the

unitarity cut integral. If K is the momentum in the unitarity cut, then the two cut

propagators can be denoted by p and p − K. See figure 1. In terms of its dependence on

the loop momentum p, the cut integral is a sum of terms of the following form:

C =

∫
d4−2ǫp c

∏m
i=1(−2p · Pi)∏k
j=1(p − Kj)2

δ(+)(p2)δ(+)((p − K)2) (1.1)

Here, c is the prefactor independent of p (but may depend on the µ2 of dimensional regular-

ization), and the vectors Kj are sums of momenta of cyclically adjacent external particles.

We work in the four-dimensional helicity scheme, so that all external momenta Ki are

4-dimensional and only the internal momentum p is (4 − 2ǫ)-dimensional. Hence we de-

compose the loop momentum as [21, 22]

p = ℓ̃ + ~µ, (1.2)

where ℓ̃ is 4-dimensional and ~µ is (−2ǫ)-dimensional, and we further define the extra-
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...
...

p

p−K

K
Figure 1: Representation of the cut integral. K is the sum of external momenta on one side of

the cut.

dimensional parameter u by

u =
4µ2

K2
. (1.3)

Let us then define the following four-vectors:1

Qj = −(
√

1 − u)Kj +
K2

j − (1 −
√

1 − u)(Kj · K)

K2
K,

Ri = −(
√

1 − u)Pi −
(1 −

√
1 − u)(Pi · K)

K2
K. (1.4)

In terms of these momentum vectors, the cut integral may be expressed as

C =

∫ 1

0
du u−1−ǫ c

∫
〈ℓ dℓ〉 [ℓ dℓ](

√
1 − u)

(K2)n+1

〈ℓ|K|ℓ]n+2

∏n+k
i=1 〈ℓ|Ri|ℓ]∏k
j=1 〈ℓ|Qj |ℓ]

, (1.5)

where we have set n = m − k, and |ℓ〉 and |ℓ] are homogeneous spinors. This follows from

the basic steps of spinor integration, which are reviewed in appendix A, but which are not

needed to apply our formulas for coefficients. The point is that the only thing we need to

do is treat a general integrand of the form

(
√

1 − u)(K2)1+n 1

〈ℓ|K|ℓ]n+2

∏k+n
j=1 〈ℓ|Rj|ℓ]

∏k
i=1 〈ℓ|Qi|ℓ]

. (1.6)

The result of this integration is the subject of this paper. In terms of the vectors defined

in (1.4) from the initial data of (1.1), and the two integers k and n, we give formulas for

1The definitions (1.4) apply specifically to the case with massless propagators. Only a slight modification

is necessary for massive propagators [15]. Even with modified definitions, (1.5) is still the correct general

form of the integral.
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the four-dimensional coefficients. For renormalizable theories, n ≤ 2. Terms with n ≤ −2

contribute to box integrals only; terms with n = −1 contribute to triangle and box integrals;

and terms with n ≥ 0 contribute to bubble, triangle and box integrals. To proceed to the

full d-dimensional coefficients, including those for pentagons, one would perform the final

integral over u with the recursion and reduction formulas of [23, 24].

We wish to remark on a few features of our formulas.

• Our starting point is the most general expression in field theory with a unitarity cut

of a one-loop amplitude. Particles can be massless or massive, although in this paper

we focus on massless propagators. Generalization to massive propagators should be

straightforward. The propagator can be a scalar, fermion, or vector, as long as the

proper degrees of freedom are accounted for.2

• The analytic formulas for tree amplitudes needed as input should be free of unphysical

singularities involving the loop momentum p, so that the form of (1.1) is apparent.

This is especially important when using on-shell recursion relations to derive tree-

level amplitudes. Using Feynman diagrams or Berends-Giele recursion [25] to get

tree-level expressions automatically circumvents this problem.

• With our formulas, we can calculate any particular coefficient directly without refer-

ence to other coefficients.

• Our formulas can easily be used to obtain the 4-dimensional part of the coefficients

only,3 by taking the limit u → 0 in (1.4). However, to be sure that all intermediate

formulas will be well-defined, it is safest to take this limit at the end of the calculation.

If we do wish to set u → 0 at the beginning, some care must be taken, as discussed

in section 3.2.

• Our formulas work for any n, although for renormalizable theories we will have n ≤ 2.

But if we consider (super)gravity or use a bad gauge choice, then we would have n > 2.

• In spinor notation, we will find factors of the form 〈a|p|b] in the numerator. This can

be rewritten as −2p · P with P = λaλ̃b. So Pi can take complex values in (1.4).

The formulas are presented in section 2. In section 3, we present an example of a

4-dimensional unitarity cut in one helicity configuration of the six-gluon amplitude. In

section 4, we give examples from the four-gluon amplitude but keep the full d-dimensional

dependence. In section 5, we discuss future applications and comparisons to other tech-

niques. Appendix A reviews the first steps in spinor integration which form the basis of

2One way to do this is to use Feynman diagrams to write down the full one-loop integrand expression,

then multiply by (p2−m2
1)

−1((p−K)2−m2
2)

−1 along with the two delta-functions δ(p2−m2
1)δ((p−K)2−m2

2),

and use these to set e.g. p2 = m2
1 in the integrand. In this way, even if propagators are fermions or vectors,

we have counted everything.
3That is to say, neglecting possible rational terms which can be calculated by other methods, for example

by the recursive techniques of [26 – 30] or the specialized diagrammatic reductions of [31, 32].
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the derivation of our coefficients. Most details of the derivation of our formulas are pre-

sented in appendix B. appendix C contains the formulas for triangle coefficients after the

truncated series expansion has been carried out explicitly, although direct the use of the

result in section 2 is likely to be simpler.

2. Coefficients of box, triangle and bubble integrals

Here we give the results for the box, triangle, and bubble coefficients in the unitarity cut

defined by the momentum K, starting from the integrand (1.1) without the prefactor c,

and using the definitions (1.4). Our convention is that the n-point scalar function is defined

by4

In = i(4π)(4−2ǫ)/2

∫
d4−2ǫp

(2π)4−2ǫ

1

p2(p − K1)2(p − K1 − K2)2 . . . (p −∑n−1
j=1 Kj)2

. (2.1)

The spinor notation we use here, which may differ from other conventions, is defined

as follows. For a four-vector ki satisfying k2
i = 0,

λi ≡ u+(ki), λ̃i ≡ u−(ki), (2.2)

thus we have the following inner products:

〈i j〉 =
〈
i−|j+

〉
= u−(ki)u+(kj), [i j] = [i+|j−] = u+(ki)u−(kj) (2.3)

Note that in this paper we use “twistor” sign conventions, so that

2ki · kj = 〈i j〉 [i j] (2.4)

which differs from the standard QCD convention by a minus sign for each spinor product

[i j]. Our definitions imply the following relations:

〈i|P |j] = u−(ki) 6 P u−(kj), 〈i|P1P2|j〉 = u−(ki) 6 P1 6 P2 u+(kj) (2.5)

The full d-dimensional amplitude will generically include pentagons in the basis. The

identification of pentagon coefficients has already been described in [24]. The operation

occurs in the final integral over u. Since our purpose here is to give the results of the

4-dimensional integration, we will not now comment any further on pentagons. In cases

involving massive species, tadpole integrals can also arise. Unitarity methods cannot detect

these. However, we expect that it will be possible to fix tadpole coefficients from other

considerations, such as a heavy mass limit [33].

2.1 Box coefficients

A box integral is identified by the two cut propagators plus two additional ones. Following

the setup of the previous section, denote the two additional momenta associated to a box

4We omit the prefactor (−1)n+1 that is common elsewhere in the literature [3, 4].
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by Kr and Ks. Then, define the vectors Qr and Qs as in (1.4). From these two vectors,

we construct two null vectors Psr,1 and Psr,2 as follows:5

∆sr = (2Qs · Qr)
2 − 4Q2

sQ
2
r

Psr,1 = Qs +

(−2Qs · Qr +
√

∆sr

2Q2
r

)
Qr

Psr,2 = Qs +

(−2Qs · Qr −
√

∆sr

2Q2
r

)
Qr (2.6)

Then, the box coefficient with momenta K,Kr,Ks is given by

C[Qr, Qs,K] =
(K2)2+n

2

( ∏k+n
j=1 〈Psr,1|Rj|Psr,2]

〈Psr,1|K|Psr,2]
n+2∏k

t=1,t6=r,s 〈Psr,1|Qt|Psr,2]
+{Psr,1 ↔ Psr,2}

)
.

(2.7)

2.2 Triangle coefficients

A triangle integral is identified by the two cut propagators plus one additional one. If the

additional momentum variable is Ks, then define the vector Qs as in (1.4). Now construct

two null vectors Ps,1 and Ps,2 as follows:

∆s = (2Qs · K)2 − 4Q2
sK

2

Ps,1 = Qs +

(−2Qs · K +
√

∆s

2K2

)
K

Ps,2 = Qs +

(−2Qs · K −
√

∆s

2K2

)
K (2.8)

Then, the triangle coefficient with momenta K,Ks is given by

C[Qs,K] =
(K2)1+n

2

1

(
√

∆s)n+1

1

(n + 1)! 〈Ps,1 Ps,2〉n+1 (2.9)

× dn+1

dτn+1

( ∏k+n
j=1 〈Ps,1 − τPs,2|RjQs|Ps,1 − τPs,2〉

∏k
t=1,t6=s 〈Ps,1 − τPs,2|QtQs|Ps,1 − τPs,2〉

+{Ps,1 ↔ Ps,2}
)∣∣∣∣∣

τ=0

.

In practice, the multiple derivative is easy to perform in a symbolic manipulation program,

either analytically or numerically, and we believe this is an efficient presentation of the

coefficient. However, we have found closed expressions, and these are given in appendix C

for n ≤ 2.

If n ≤ −2, then the coefficient is simply zero.

5Here we see that the formula we give is ill-defined in special cases where Q2
r = 0. This case can arise if

we have set u to zero to find a 4-dimensional coefficient, and the external momentum Kr is null. However,

there is no difficulty with the underlying method. For a given box, Qr and Qs can be exchanged. Clearly, if

both Kr and Ks are null, we can simply take Psr,1 = Qs, Psr,2 = Qr. In practice, this problem can always

be avoided by keeping u finite until the end of the calculation.
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2.3 Bubble coefficients

Every unitarity cut singles out a unique bubble integral. However, in our derivation, bubble

and triangle integrals are related, so the following formulas still require the quantities

defined in (2.8). We further introduce two arbitrary real null vectors,6 η and η̃, and their

associated spinors. These null vectors must, however, be chosen generically: they should

not coincide with other momentum variables.

The coefficient of the bubble integral with momentum K is given by

C[K]=(K2)1+n
n∑

q=0

(−1)q

q!

dq

dsq

(
B(0)

n,n−q(s)+

k∑

r=1

n∑

a=q

(
B(r;a−q;1)

n,n−a (s)−B(r;a−q;2)
n,n−a (s)

))∣∣∣∣∣
s=0

,

(2.10)

where

B(0)
n,t(s) ≡ dn

dτn

(
1

n![η|η̃K|η]n
(2η · K)t+1

(t + 1)(K2)t+1
×

×
∏n+k

j=1 〈ℓ|Rj(K + sη)|ℓ〉
〈ℓ η〉n+1∏k

p=1 〈ℓ|Qp(K + sη)|ℓ〉
||ℓ〉→|K−τ eη|η]

)∣∣∣∣∣
τ=0

, (2.11)

B(r;b;1)
n,t (s) ≡ (−1)b+1

b!
√

∆r
b+1 〈Pr,1 Pr,2〉b

db

dτ b

(
1

(t + 1)

〈Pr,1 − τPr,2|η|Pr,1]
t+1

〈Pr,1 − τPr,2|K|Pr,1]
t+1

× 〈Pr,1 − τPr,2|Qrη|Pr,1 − τPr,2〉b

〈Pr,1 − τPr,2|ηK|Pr,1 − τPr,2〉n+1 × (2.12)

×
∏n+k

j=1 〈Pr,1 − τPr,2|Rj(K + sη)|Pr,1 − τPr,2〉
∏k

p=1,p 6=r 〈Pr,1 − τPr,2|Qp(K + sη)|Pr,1 − τPr,2〉

)∣∣∣∣∣
τ=0

,

B(r;b;2)
n,t (s) ≡ (−1)b+1

b!
√

∆r
b+1 〈Pr,1 Pr,2〉b

db

dτ b

(
1

(t + 1)

〈Pr,2 − τPr,1|η|Pr,2]
t+1

〈Pr,2 − τPr,1|K|Pr,2]
t+1

× 〈Pr,2 − τPr,1|Qrη|Pr,2 − τPr,1〉b

〈Pr,2 − τPr,1|ηK|Pr,2 − τPr,1〉n+1 × (2.13)

×
∏n+k

j=1 〈Pr,2 − τPr,1|Rj(K + sη)|Pr,2 − τPr,1〉
∏k

p=1,p 6=r 〈Pr,2 − τPr,1|Qp(K + sη)|Pr,2 − τPr,1〉

)∣∣∣∣∣
τ=0

.

Before ending this section, we want to make an additional remark. The derivation of

these formulas, given in appendix B, involved reducing the degree of λ̃ in both numerators

and denominators. However, we could just as well choose to reduce the degree of λ instead.

In this case we would get formulas with the following replacement: |⋆〉 → |⋆] and |⋆] → |⋆〉.
These two sets of formulas are equivalent to each other in the case u 6= 0. But if we naively

set u = 0 from the beginning, it is possible that one of the two sets of formulas will break

down. Such an example will be seen in section 3.2.

6The reality condition is important. These vectors should be physical momenta of massless particles.
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3. An example from the six-gluon amplitude

In this section we test our formulas by computing some coefficients from a one-loop partial

amplitude with six external gluons and an adjoint scalar circulating in the loop. These

contribute to the full six-gluon amplitude in the spinor-helicity formalism in the context

of the supersymmetric decomposition [34, 1, 35]. The box coefficient was first computed

in [36], and the bubble coefficient was first computed in [8]. The two-mass-triangle coef-

ficients have not appeared in this form before, because it is possible to modify the basis

and eliminate the corresponding integrals, as described in [7].7 In [7] it was shown that for

gluon amplitudes, these coefficients are constrained by IR and UV divergences, and we use

that relation here as a consistency check.

Here we set the dimensional parameter u to zero from the start in order to work with

simpler expressions. As described above, this simplification requires some care, and in fact

we will see the consequences when we derive the triangle coefficients.

We choose the unitarity cut of the momentum K ≡ k4 + k5 + k6 in the helicity config-

uration (1−2−3+4−5+6+). The cut integral is

C123 =

∫
dµ 2A(ℓ−1 , 1−, 2−, 3+, ℓ+

2 )A((−ℓ2)
−, 4−, 5+, 6+, (−ℓ1)

+)

=
2

s456[1 2][2 3] 〈4 5〉 〈5 6〉

∫
dµ

〈4 ℓ1〉2 〈4 ℓ2〉 [3 ℓ1]
2[3 ℓ2]

〈6 ℓ1〉 [ℓ1 1]

= − 2

s456 [1 2] [2 3] 〈4 5〉 〈5 6〉

∫
dµ

〈1|ℓ|6] 〈4|ℓ|3]3
(ℓ − k6)2(ℓ + k1)2

(3.1)

+
2 〈4|K|3]

s456 [1 2] [2 3] 〈4 5〉 〈5 6〉

∫
dµ

〈1|ℓ|6] 〈4|ℓ|3]2
(ℓ − k6)2(ℓ + k1)2

So we have two terms, each with k = 2, and

K1 = k6, K2 = −k1,

so

Q1 = −k6, Q2 = k1.

In the first term m = 4, and in the second term m = 3. We have

R1 = −λ1λ̃6, R2 = R3 = R4 = −λ4λ̃3.

3.1 Box coefficient

Since k = 2, we see immediately that there can be only one nonvanishing box coefficient

in this cut. We compute the null vectors Psr,1 and Psr,2 from the definitions in (2.6), and

7In practice it is probably best to use the modified basis, because it is less divergent.
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define the associated spinors as follows.8

P12,1 = Q1 = −k6 |P12,1〉 = |6〉 |P12,1] = −|6]
P12,2 = Q2 = k1 |P12,2〉 = |1〉 |P12,2] = |1]

Applying (2.7) to the expressions under the integral signs in (3.1), we get

C[Q1, Q2,K] =
s2+n
456

2

(
(−1)n+2s61 〈6 4〉n+1 [3 1]n+1

〈6|K|1]n+2

)

Now attach the prefactors for each of the two terms. For the first term with n = 2:

− 2

s456[1 2][2 3] 〈4 5〉 〈5 6〉 × C[Q1, Q2,K] = − s3
456s61 〈6 4〉3 [3 1]3

[1 2][2 3] 〈4 5〉 〈5 6〉 〈6|K|1]4

For the second term with n = 1:

2 〈4|K|3]
s456[1 2][2 3] 〈4 5〉 〈5 6〉 × C[Q1, Q2,K] = − s2

456s61 〈6 4〉2 [3 1]2 〈4|K|3]
[1 2][2 3] 〈4 5〉 〈5 6〉 〈6|K|1]3

So the total coefficient of the box (1|23|45|6), for the scalar contribution, is

−s2
456s61 〈6 4〉2 [3 1]2 〈6|K|3] 〈4|K|1]

[1 2][2 3] 〈4 5〉 〈5 6〉 〈6|K|1]4
(3.2)

This agrees with the expression in [36] when we incorporate the usual factor of 2/(s456s61).

3.2 Triangle coefficients

Since k = 2, we see immediately that there can be only two nonvanishing triangle coeffi-

cients in this cut.

For Q1:

√
∆1 = −s456 + s45 (3.3)

P1,1 = −k6 |P1,1〉 = |6〉 |P1,1] = −|6]

P1,2 =
s456 − s45

s456
(k4 + k5) −

s45

s456
k6 |P1,2〉 =

K|6]
s456

|P1,2] = K |6〉

For Q2:

√
∆2 = −s456 + s23 (3.4)

P2,1 = k1 |P2,1〉 = |1〉 |P2,1] = |1]

P2,2 =
s23

s456
k1 −

s456 − s23

s456
(k2 + k3) |P2,2〉 =

K|1]
s456

|P2,2] = −K |1〉

8We could just as well use

P21,1 = Q2 = k1, |P21,1〉 = |1〉 , |P21,1] = |1],
P21,2 = Q1 = −k6, |P21,2〉 = |6〉 , |P21,2] = −|6].
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Let us first consider the triangle (1|23|456), with momenta K and K2 (Q2). With the

identity

dn+1

dτn+1

(
(a − τb)n+1(−τ)n+2

c − τd
+

(b − τa)n+1

d − τc

)∣∣∣∣
τ→0

=
(n + 1)!(bc − ad)n+1

dn+2

we see that the formula (2.9) for triangle coefficients becomes

C[Q2,K] =
s1+n
456

2

〈1|K|1] 〈4 6〉n+1 [3 1]n+1

〈6|K|1]n+2

Adding the n = 1 and n = 2 contributions and attaching the prefactors, we find that the

total coefficient is

− 2

s456[1 2][2 3] 〈4 5〉 〈5 6〉

(
s3
456

2

〈1|K|1] 〈4 6〉3 [3 1]3

〈6|K|1]4

)

+
2 〈4|K|3]

s456[1 2][2 3] 〈4 5〉 〈5 6〉

(
s2
456

2

〈1|K|1] 〈4 6〉2 [3 1]2

〈6|K|1]3

)

=
s456 〈1|K|1] 〈4|K|1] 〈6|K|3] [3 1]2 〈4 6〉2

[1 2][2 3] 〈4 5〉 〈5 6〉 〈6|K|1]4
(3.5)

Now consider the triangle (123|45|6), with momenta K and K1 (Q1). A naive appli-

cation of the formula (2.9) in the limit u → 0 gives

C[Q1,K] = 0

because of the R1Q1 contraction in the numerator’s product. But the triangle coefficient

does not actually vanish! This is clear, because this triangle is related by conjugation and

label permutation to the previous one. This is the degenerate case that we discussed at the

end of the previous section. The reason is clear. From (3.1), we see that for Q2, the pole

is [ℓ 1], while for Q1 it is 〈ℓ 6〉. Since the formula given in previous section is obtained by

writing total derivative in [dα̃ ∂eλ
], they are not suitable for pole 〈ℓ 6〉. To deal with it we

need to use the conjugate formula where we replace |⋆〉 → |⋆] and |⋆] → |⋆〉, i.e., writing

a total derivative of the form 〈dα ∂λ〉. This will be a general rule in all 4-dimensional

calculations with null poles. We want to emphasize that this situation will not arise if we

keep u 6= 0 until the end.

After clarifying the subtle point we can continue our calculation. Either by taking the

conjugate of the formula (2.10), which is

sn+1
123

2(n + 1)!(
√

∆1)n+1[P1 P2]n+1
× (3.6)

× dn+1

dτn+1

(
[P1 − τP2|R1Q1|P1 − τP2][P1 − τP2|R2Q1|P1 − τP2]

n+1

[P1 − τP2|Q2Q1|P1 − τP2]
+ {P1 ↔ P2}

)
,

or by directly applying the relabeling and conjugation to (3.5), we find

C[Q1,K] = −sn+1
456 〈6|K|6] 〈6 4〉n+1 [1 3]n+1

2 〈6|K|1]n+2 .
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Adding the two terms from n = 2 and n = 1, with prefactors, we get

−s456 〈6|K|6] 〈6 4〉2 [1 3]2

[1 2][2 3] 〈4 5〉 〈5 6〉 (−s456 〈6 4〉 [1 3] + 〈4|K|3] 〈6|K|1])

= −s456 〈6|K|6] 〈6 4〉2 [1 3]2 〈4|K|1] 〈6|K|3]
[1 2][2 3] 〈4 5〉 〈5 6〉 〈6|K|1]4

(3.7)

Consistency check: these particular triangle coefficients have not been isolated before,

because two-mass triangles disappear in the modified integral basis proposed in [7]. We

can now perform a consistency check based on the same identity that allowed the basis to

be modified. Consider all the contributions to the divergence (−s)−ǫ, where s = K2. In

these example, there are exactly these two 2-mass triangles plus the single box from the

previous subsection. The condition expressing the vanishing of this divergence is9

0 = c2m h
4

2

st
−
∑

c2m
3 (s, t)

1

(−s) − (−t)
(3.8)

= c2m h
4

2

s456s61
− c[1|23|456]

1

−s456 + s23
− c[123|45|6]

1

−s456 + s45

= c2m h
4

2

s456s61
+ c[1|23|456]

1

〈1|K|1] − c[1|23|456]
1

〈6|K|6] .

It is easy to see that this identity is satisfied by our coefficients given in (3.2), (3.5), (3.7).

3.3 Bubble coefficient

Let us choose η = 3 and η̃ = 4. This choice gives somewhat simpler formulas; for example,

B(0)
n,n−q(s) and B(2;a−q;1)

n,n−a (s) are identically zero, because there is a sufficiently high power

of τ inside the derivative. We find

B(0)
n,n−q(s) = 0

B(1;a−q;1)
n,n−a (s) =

(−1)a [6 3]a−q

〈6|K|6]n−q+2 (a − q)!

da−q

dτa−q

(
[3 6]n−a+1

sn+1−q
456 (n − a + 1)

× τa−q(s456 [6|K + sk3|6〉 − τs [6|3|K|6])(s456 〈4 6〉 − τ 〈4|K|6])n+1

(s456 〈3 6〉 − τ 〈3|K|6])q(s456 [1|K + sk3|6〉 − τ [1|K + sk3|K|6])

)∣∣∣∣
τ=0

B(1;a−q;2)
n,n−a (s) =

(−1)q [6 3]a−q

〈6|K|6]n−q+2 (a − q)!

da−q

dτa−q

(
[3|K|6〉n−a+1

sn+1−q
456 (n − a + 1)

× (s [6|3|K|6] − τs456 [6|K + sk3|6〉)(〈4|K|6] − τs456 〈4 6〉)n+1

(〈3|K|6] − τs456 〈3 6〉)q([1|K + sk3|K|6] − τs456 [1|K + sk3|6〉)

)∣∣∣∣
τ=0

B(2;a−q;1)
n,n−a (s) = 0

B(2;a−q;2)
n,n−a (s) =

(−1)q [1 3]a−q

〈1|K|1]n−q+1 (a − q)!

da−q

dτa−q

(
[3|K|1〉n−a+1

sn+1−q
456 (n − a + 1)

× (〈4|K|1] − τs456 〈4 1〉)n+1

(〈3|K|1] − τs456 〈3 1〉)q(〈6|K|1] − τs456 〈6 1〉)

)∣∣∣∣
τ=0

9The relative sign between box and triangle terms comes because our sign conventions for the master

integrals (2.1) differ from those of [7].
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We then substitute these expressions into (2.10) and attach the prefactors. For B(2;a−q;2)
n,n−a (s),

in fact only the q = 0 contributions matter, because the s-dependence has dropped out

with our choice of |η〉 = |3〉. We have checked numerically that the result agrees with the

corresponding result derived by the technique of [8].10

4. A d-dimensional example: four gluons

In this section we illustrate the use of the formulas in section 2 in the case of four gluons with

a scalar propagating in the loop. These amplitudes were first given in [22]. Our notation

and presentation here are more similar to [37] and especially [24], where these amplitudes

were derived by newer techniques. Here we have verified that our results reproduce those

in the literature.11 We stop just before the final integral over u, which could in general be

done by the techniques of [23, 24], developed in the context of d-dimensional unitarity [38,

22, 39, 40, 37]. Note therefore that the labels of “box, triangle, bubble” are used in the

d-dimensional sense. The four-gluon amplitude is a nice test of our formulas, because this

simple case is where they are most likely to break down, for example by a bad choice of η,

as we shall see in the last configuration. We consider three of the four independent helicity

configurations, since the fourth adds no new features.

For ease of presentation, we make use of the variable z as given in (A.1).

4.1 (1+, 2+, 3+, 4+)

The simplest helicity configuration is (+ + ++). The integrand for the cut K = K12 is

2µ4[1 2][3 4]

〈1 2〉 〈3 4〉
1

(p − k1)2(p + k4)2

From this, by comparing with general formula (1.1) we have m = 0, k = 2, K1 = k1,K2 =

−k4, thus n ≡ m − k = −2, so there are neither triangle nor bubble contributions. There

is only one box coefficient. There are no vectors Pi. The expression inside the parentheses

in (2.7) thus degenerates to 1, so we find

2µ4[1 2][3 4]

〈1 2〉 〈3 4〉
1

2
(1 + 1) =

2µ4[1 2][3 4]

〈1 2〉 〈3 4〉 . (4.1)

4.2 (1−, 2+, 3+, 4+)

For this case we have two cuts C12 and C41. These two cuts are related to each other by

symmetry, so we focus on cut C41. The integrand is

− u[2 3]

2 〈2 3〉
〈1|p|4]2

(p − k4)(p + k3)2

For this case we have m = k = 2 so n = m − k = 0, K1 = k4,K2 = −k3, thus

P = λ1λ̃4, R = R1 = R2 = −(1 − 2z)λ1λ̃4

Q1 = −zk1 − (1 − z)k4, Q2 = (1 − z)k3 + zk2

10We were unable to confirm numerically the printed value of the corresponding coefficient in [8], so we

repeated the calculation.
11The − + −+ amplitude was given the wrong overall sign in equation (4.31) of [24].
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Box: using

Q2
1 = Q2

2 =
u

4
K2

41, 2Q1 · Q2 = −K2
12 +

u

2
(K2

12 − K2
13) (4.2)

∆12 = s2(1 − u)

(
1 + u

t

s

)
, s = K2

12, t = K2
13, (4.3)

we have

− u[2 3]

2 〈2 3〉
[4|3|1〉2 (2 + Au)

2s2
13

s2
41

2
= −s41[2 3]2[4 3]2u(2 + Au)

8[1 3]2
, A =

s13

s12
. (4.4)

Triangle: formally, there are two triangles identified by the momenta K1 and K2. In

this special example with only four external particles, they are, in fact, the same triangle.

So we will need to add these two contributions to the final coefficient.

Let us start with K1. From (2.8), we find

∆1 = (1 − 2z)2s2
14, P1,1 = (1 − 2z)k1, P1,2 = −(1 − 2z)k4.

For the spinors, we choose

|P1,1〉 = |1〉 , |P1,1] = (1 − 2z)|1], |P1,2〉 = |4〉 , |P1,2] = −(1 − 2z)|4].

Since n = 0, using (2.9) we get

−(1 − 2z)

2 〈4 1〉
d

dτ

(
z2 〈4 1〉2 [4 1]2 〈1 4〉2

〈k4 − τk1|Q2Q1|k4 − τk1〉
+

z2τ4 〈4 1〉2 [4 1]2 〈1 4〉2
〈k1 − τk4|Q2Q1|k1 − τk4〉

)
= − s12s

2
41

2 〈4|3|1]2

With the prefactor included, we have

− u[2 3]

2 〈2 3〉C[Q1,K41] =
us41[2 3]2[3 4]2

4s12[3 1]2

For the triangle with K2 we have

∆2 = (1 − 2z)2s2
23, P2,1 = −(1 − 2z)k2, P2,2 = (1 − 2z)k3.

Similar calculations give

− u[2 3]

2 〈2 3〉C[Q2,K41] = −u[2 3]2[4 3]2

4s23[3 1]2

(
s2
13

s12
− 2s13 − s12

)
.

Adding these two contributions together, we find that the triangle coefficient is

−u[2 3]2[4 3]2s12(s41 − s13)

2s23s12[3 1]2
. (4.5)
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Bubble: the formula (2.10) reduces to

C[K] =
[η|RK|η]2

[η|Q1K|η][η|Q2K|η]

−
2∑

r=1

{
K2

√
∆r

〈Pr,1|η|Pr,1]

〈Pr,1|K|Pr,1]

〈Pr,1|R|Pr,2]
2

〈Pr,1|η|Pr,2] 〈Pr,1|Q2|Pr,2]
− {Pr,1 ↔ Pr,2}

}
.

Taking η = k4 it is easy to see that both the first term and the r = 1 terms are zero, so we

are left with the r = 2 terms only. The result is

− [4 3]2

[3 1]2
s13

s41

(
1 − s13

s12

)
.

With the prefactor included, we find that the bubble coefficient is

− u[2 3]

2 〈2 3〉C[K] =
us13(s12 − s13)[2 3]2[3 4]2

2s2
41s12[1 3]2

. (4.6)

4.3 (1−, 2+, 3−, 4+)

The integrand for the cut K41 is given by

2 〈1|ℓ|4]2 〈3|ℓ|2]2
s2
41((ℓ − k4)2 − µ2)((ℓ + k3)2 − µ2)

For this case we have m = 4, k = 2, so n = m − k = 2, K1 = k4,K2 = −k3, thus

R1 = R2 = −(1 − 2z)λ1λ̃4, R3 = R4 = −(1 − 2z)λ3λ̃2.

Q1 = −zk1 − (1 − z)k4, Q2 = (1 − z)k3 + zk2. (4.7)

Box: by now it is straightforward to find that the coefficient is

2

s2
41

C[Q1, Q2,K] =
〈1 3〉2 s2

41(8s
2
12 + 8s12s13u + s2

13u
2)

8 〈2 4〉2 s2
13

. (4.8)

Triangle: for the first triangle, with K1, we have

C[Q1,K] =
1

12(1 − 2z)3 〈1 4〉3
×

× d3

dτ3

(
〈k1 − τk4|R1Q1|k1 − τk4〉2 〈k1 − τk4|R3Q1|k1 − τk4〉2

〈k1 − τk4|Q2Q1|k1 − τk4〉
′ +{k1 ↔ k4}

)
.

In this case, the factor 〈k1 − τk4|R1Q1|k1 − τk4〉 is proportional to τ2, so the contribution

of first term is zero and we have

2

s2
41

C[Q1,K] = −〈1 3〉2 s13

2 〈2 4〉2
(1 + Ã)2(2 + Ãu)

Ã3
, Ã =

s13

s12

By symmetry, for the triangle with momentum K2 we just need to do exchange the labels

1 ↔ 2, 3 ↔ 4, so the final coefficient is just twice what is written above, namely

−〈1 3〉2 s13

〈2 4〉2
(1 + Ã)2(2 + Ãu)

Ã3
, Ã =

s13

s12
. (4.9)
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Bubble: to present this example analytically, we choose η = k4 rather than a more generic

value. However, we do run into a problem then, because of an accidental degeneracy of

poles. This problem could have been avoided by choosing a generic η, but for analytic

purposes, we considered this case separately, and it is presented in appendix B.3.1. The

formula (B.28) for the bubble coefficient now takes modified input, as given in (B.25), (B.26)

and (B.27).

First, consider the term (B.25). Since n = 2, there is a third derivative in τ . Since the

factor [4|(K − τ η̃)R1(K + sk4)(K − τ η̃)|4] is proportional to τ2, this contribution vanishes.

Similarly, (B.26) will be zero. The only remaining part is the r = 2 case, (B.27), with

P1 = −(1 − 2z)k2, P2 = (1 − 2z)K3, ∆r=2 = (1 − 2z)s2
41.

Let us discuss B(2;a;2)
2,t (s) first. Notice that

〈3 − τ2|R3(K + sη)|3 − τ2〉 = (1 − 2z)τ 〈2 3〉 s12B

(
− s +

τ

B
(1 + (1 + s)Ã)

)
.

We see that to get a nonzero value of B(2;a;2)
2,t (s) we must have a = 2, and more specifically,

B(2;a;2)
2,t (s) = 0, a = 0, 1

B(2;a=2;1)
2,t (s) = −(1 − 2z)[4 1]2B

4 〈1 2〉4

s3
41 〈2 3〉2

(−s12)
t+1

(t + 1)st+1
41

z2s2

(1 − 2z) − zs)

Because the factor s2 appears in B(2;a=2;1)
2,t (s), there is a nonzero contribution only when we

take q = 2 in the derivative with respect to s. But then a − q = 0, and since B(2;a−q;2)
2,t (s)

is only nonzero for a − q = 2, the contribution from this part is zero.

For B(2;a;1)
2,t we have

B(2;a;1)
2,t (s) =

〈1 3〉2

〈2 4〉2 Ã2s41

(−1)a(1 − 2z)3−aÃt+1

a!(t + 1)(1 + Ã)a+t+1
×

× da

dτ̃a

(
(1 − τ̃)t+1(1 − z + zÃτ̃)a(sÃτ̃ − 1 − (1 + s)Ã)2

(1 − τ̃)4−a((1 − 2z) − zs)

)
,

where τ̃ = τ/B, B = 〈2 4〉 / 〈3 4〉, and Ã = s13/s12. Summing up (t, a) = (2, 0), (1, 1), (0, 2)

with s = 0, (t, a) = (1, 0), (0, 1) with the first derivative of s, and (t, a) = (0, 0) with the

second derivative of s, we finally find that the coefficient is

2

s2
41

C[K] = −2 〈1 3〉2 s13

〈2 4〉2 s41

(12 + 3Ã(6 + u) + Ã2(4 + 5u))

12Ã2
, Ã =

s13

s12
. (4.10)

5. Discussion

Since the formalism described here is based on unitarity cuts of the amplitude, it shares

with other unitarity-based approaches12 the property that the input required is simply a

12For a review, see section 4 of [41].
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collection of tree-level amplitudes. These are manifestly gauge invariant and can take quite

compact forms. By dealing with different cuts separately, we can attack the problem in

stages.

Furthermore, our formulas separate and identify the coefficients of individual master

integrals. A single unitarity cut yields, directly and separately, the coefficients of all the

master integrals with the same cut propagators. Any single coefficient can be targeted

individually, without the need to first compute any others or additional spurious terms.

5.1 Comparison with other approaches

The reduction algorithm of Ossola, Papadopoulos and Pittau (OPP) [42 – 44] produces

coefficients through algebraic operations at the integrand level, through recursive solution

of a set of algebraic equations. In fact, our formulas given here are the results of solving

algebraic equations in a different style. In the OPP method, several points of phase space

are used, while in our method, we differentiate at a single point of phase space. The

derivative operator can be interpreted as an algebraic procedure as applied to rational

functions at a single point.

Just like our result, coefficients from OPP method can be fed into the d-dimensional

unitarity program as described in [23, 24]. Alternatively, the algorithm may be interpreted

numerically, and in fact such an implementation has now been given [45] (see also the

procedure of [46]). We believe that the formulas of the present paper are also well suited

for numerical programming, and this will be the subject of forthcoming work.

One final note on comparison to the OPP method is that our formulas are valid for

arbitrary values of n, in particular for n > 2. Such an extension has been mentioned within

the OPP method, although details have not been worked out.

An approach that is closer in spirit to ours was given by Forde in [19]. There, co-

efficients for boxes, triangles and bubbles are given within the spinor formalism. The

foundation there consists of generalized unitarity cuts, namely quadruple cuts for boxes,

triple cuts for triangles, and ordinary double cuts for bubbles. The motivation was to

capitalize on the efficiency of quadruple cuts for box coefficients, and also to be able to

target specific coefficients. Forde’s final formulas resemble ours in that they are based on

data from tree amplitudes and given in terms of a coefficient in a series expansion of one

variable for triangles, and two variables for bubbles. The formula for a bubble coefficient,

however, depends on tree amplitude input for all possible triple cuts, while ours comes di-

rectly from the ordinary double cut (though still depending on all possible momenta from

a hypothetical third cut). If the aim is to assemble an amplitude in its entirety, then of

course the complete tree-level amplitude input will be available anyway.

In [15], we discussed the application of quadruple cuts to box and pentagon integrals in

d dimensions. A d-dimensional analysis of triple cuts for triangle integrals has been given

in [18]. Let us now briefly examine the triple cut in the context of the present paper in

order to make contact with the result of [19].

With three delta functions in d dimensions, we first use two of them to set up the

four-dimensional spinor integrand, as explained in appendix A. After integrating over the
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variable t, defined in (A.2), we arrive at the integral

∫
〈ℓ dℓ〉 [ℓ dℓ] G(ℓ) δ

(
K2 〈ℓ|Q|ℓ]
〈ℓ|K|ℓ]

)

Now we can use momenta Q,K to construct two null momenta as in (2.8) and expand our

spinor variables in the basis of their spinor components as follows:

|ℓ〉 = |P1〉 + z |P2〉 , |ℓ] = |P1] + z|P2]

Here z is a complex number and z is its conjugate. With this substitution, we get

∫
dz dz (2P1 · P2) G(z, z) δ

(
K2 〈P1|Q|P1] + zz 〈P2|Q|P2]

〈P1|Q|P1] + zz 〈P2|Q|P2]

)
. (5.1)

Now we can change to polar coordinates so that z = reiθ and dzdz = rdrdθ. Furthermore,

if we now define the new variable t = eiθ, we have

dzdz = rdr × −idt

t
.

The delta function depends only on r, so we can use it to integrate over r. Then we are left

with t integration only. From here, for example, it is easy to see the vanishing condition

given in eq. (4.20) of [19].

Furthermore, for box integrals, we have an extra propagator, so the general form

of the integrand is 1/(a + tb + t−1c). Only polynomial terms correspond to the triangle

contribution.

The parametrization we have used here is not exactly the one used by Forde, but the

central idea is the same and t is the angle variable for both triple cuts and double cuts.

5.2 Prospects

The most obvious and immediate application of our results will be to the computation

of complete one-loop amplitudes, as in the example of section 4, where the u-dependent

expressions for coefficients are fed into the reduction formulas of [23, 24] to give the final

ǫ-dependent coefficients. The four-momenta of the external particles may be numerical at

every step. The reduction formulas currently require analytic expressions in u.

Our formulas may also be specialized to the cut-constructible part of the amplitude,

as in the example of section 3, simply by setting u → 0 at the end of the calculation and

interpreting the formulas as exact coefficients of 4-dimensional master integrals.

Since several methods proposed in the literature are specialized for computing either

cut-constructible or rational components of an amplitude, it would also be very interesting

to specialize our formulas to isolate the rational part of one-loop amplitudes. This could

be done by studying the ǫ-dependence of the reduction formulas together with the u-

dependence in the coefficients, in order to focus precisely on the ǫ0 term in the final ǫ-

expansion of the amplitude. We will return to this point in a future publication.

Finally, as we remarked in the introduction, our formulas apply to amplitudes with

massive or massless propagators. In order to arrive at complete amplitudes in the massive

– 17 –



J
H
E
P
0
2
(
2
0
0
8
)
0
9
5

case, the master integrals should be evaluated explicitly,13 and our results will need to be

supplemented with the contributions of tadpole and massless bubble integrals.
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A. Setting up the cut integral

In this appendix we briefly review the first steps in spinor integration, in the context of d-

dimensional unitarity, leading from equation (1.1) to equation (1.5). For a fuller discussion

of this technique, see [24]. Within the four-dimensional helicity scheme, we apply (1.2)

and (1.3). In the integrand, p is replaced by ℓ̃, and the measure is transformed as follows:

∫
d4−2ǫp

(2π)4−2ǫ
=

∫
d4ℓ̃

(2π)4
(4π)ǫ

Γ(−ǫ)

∫
dµ2 (µ2)−1−ǫ,

We now drop the factor (4π)ǫ

(2π)4Γ(−ǫ)

(
K2

4

)−ǫ
, which is universal and common to cuts of am-

plitudes and master integrals. Following [23, 24], we further decompose the 4-dimensional

momentum into a null component and a component proportional to the cut momentum K.

ℓ̃ = ℓ + zK, ℓ2 = 0, =⇒
∫

d4ℓ̃ =

∫
dz d4ℓ δ+(ℓ2)(2ℓ · K).

While changing the variable µ to u with (1.3), we note that the kinematics of the unitarity

cut constrain the integration domain to be u ∈ [0, 1]. Our cut integral (1.1) can now been

rewritten as the following expression.

∫ 1

0
du u−1−ǫ

∫
dz (1 − 2z)δ

(
z(1 − z) − u

4

)

∫
d4ℓ δ+(ℓ2)δ((1 − 2z)K2 − 2ℓ · K)

∏M
i=1(−2Pi · (ℓ + zK))

∏N
j=1(K

2
j − z(2Kj · K) − 2ℓ · Kj)

Notice that the z-integral can now be done with the first delta function. In fact, the

kinematics of the unitarity cut require us to choose exactly one solution for z. If we take

K > 0, then

z =
1 −

√
1 − u

2
, or equivalently, 1 − 2z =

√
1 − u. (A.1)

13For a uniform mass, this has been done in [22].
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Now we change to spinor variables with [47]

ℓ = tλλ̃, (A.2)

where t takes nonnegative real values, and λ and λ̃ are homogeneous spinors. The measure

transforms as
∫

d4ℓ δ(+)(ℓ2) (•) =

∫ ∞

0
dt t

∫

λ̃=λ̄
〈λ dλ〉 [λ̃ dλ̃](•).

The domain of integration of t is again consistent with the kinematic region of the unitarity

cut. From here on, we use |ℓ〉 and |ℓ] interchangeably with λ and λ̃. We have now arrived

at the following expression:

C =

∫
du u−1−ǫ

∫
〈ℓ dℓ〉 [ℓ dℓ]

∫
t dt δ((1 − 2z)K2 + t 〈ℓ|K|ℓ]) ×

×
∏M

i=1(−z(2K · Pi) + t 〈ℓ|Pi|ℓ])∏N
j=1(K

2
j − z(2Kj · K) + t 〈ℓ|Kj |ℓ])

Finally, we use the remaining delta function to perform the integral over the variable t.

With the substitution (A.1), the result is equation (1.5).

B. Derivation of the formulas for coefficients

In this appendix we outline the derivation of the main results of this paper, which are the

formulas (2.7), (2.9) and (2.10). Our technique is the type of spinor integration carried

out in [7, 8, 15], but we stress that understanding these techniques is unnecessary for

applying the results. Indeed, equivalent formulas have already appeared in [15].14 The

difference is that our starting point is now the raw unitarity cut integral, before converting

the loop momentum to spinor variables. In the final formulas, we now explicitly evaluate

the residue at multiple poles. Additionally, the present versions of the formulas feature

substantial simplification of the bubble coefficients.

Our foundation here is the framework laid out in [15] and its references. Let us briefly

recall the key ideas. The general integrand given as the starting point in [15] is15

Iterm =
G(λ)

∏n+k
j=1 [aj ℓ]

〈ℓ|K|ℓ]n+2∏k
p=1 〈ℓ|Qp|ℓ]

. (B.1)

Comparing with the expression (1.5), we see that we will take G(λ) to be constant and

[aj | = 〈ℓ|Rj |. The idea of spinor integration is to rewrite the integral so that we can carry

it out with the residue theorem. The next step, therefore, is to isolate poles by splitting

the denominator factors with spinor identities such as

[a ℓ]

〈ℓ|Q1|ℓ] 〈ℓ|Q2|ℓ]
=

[a|Q1|ℓ〉
〈ℓ|Q2Q1|ℓ〉 〈ℓ|Q1|ℓ]

+
[a|Q2|ℓ〉

〈ℓ|Q1Q2|ℓ〉 〈ℓ|Q2|ℓ]
. (B.2)

14The formulas for coefficients given in [15] differ from the ones given here by a factor of
√

1 − u. This

comes from the convention of our starting point (1.1) or equivalently (1.5), where this factor appears

explicitly.
15We have redefined the index n for consistency.
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This procedure is applied to the amplitude on one hand and the master integrals on the

other. By matching functional forms, we extract the coefficients.

B.1 Box

The formula (2.7) for a box coefficient is trivially related to the one given in [15]. We only

need to observe that now that we take G(λ) to be constant and [aj | = 〈ℓ|Rj | in (B.1),

the poles from the factors 〈ℓ|QsQr|ℓ〉 are inserted into [aj | as well when we evaluate the

residue.

B.2 Triangle

For a triangle associated to momenta Ks,K, the coefficient was found in [15] to be the

difference of the two residues from the poles in 〈ℓ|QsK|ℓ〉n+2 of the following function:16

(−1)n(K2)1+n
√

∆s

2

∏k+n
j=1 〈ℓ|RjQs|ℓ〉

〈ℓ|QsK|ℓ〉n+2∏k
t=1,t6=s 〈ℓ|QtQs|ℓ〉

. (B.3)

The quantities ∆s, Ps,1, Ps,2 were defined in (2.8) specifically to deal with the factor

〈ℓ|QsK|ℓ〉 by identifying the poles explicitly. With those definitions, we find an identity

that separates the two poles:

〈ℓ|QsK|ℓ〉 = 〈ℓ Ps,1〉 〈ℓ Ps,2〉
K2[Ps,1 Ps,2]√

∆s
. (B.4)

Now consider the residue from a multiple pole, in an expression of the form

1

〈ℓ η〉n
N(|ℓ〉 , |ℓ])
D(|ℓ〉 , |ℓ]) .

We can start by substituting |ℓ] = |η], so we are dealing with the holomorphic function

1

〈ℓ η〉n
N(|ℓ〉 , |η])

D(|ℓ〉 , |η])
.

For an arbitrary auxiliary spinor ζ, we have the following identity.

1

〈ℓ (η − τζ)〉n =
dn−1

dτn−1

(
1

(n − 1)! 〈ℓ ζ〉n−1

1

〈ℓ (η − τζ)〉

)∣∣∣∣
τ→0

(B.5)

Thus we find

1

〈ℓ (η − τζ)〉n =
dn−1

dτn−1

(
1

(n − 1)! 〈ℓ ζ〉n−1

1

〈ℓ (η − τζ)〉
N(|ℓ〉 , |η])

D(|ℓ〉 , |η])

)∣∣∣∣
τ→0

. (B.6)

Now we extract the residue at the single pole 〈ℓ (η − τζ)〉 before taking the derivative. We

find

dn−1

dτn−1

(
1

(n − 1)! 〈η ζ〉n−1

N(|η − τζ〉 , |η])

D(|η − τζ〉 , |η])

)∣∣∣∣
τ→0

. (B.7)

16Here we have again redefined n and made substitutions for G(λ) and [aj |.
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To obtain the residues from the factor 〈ℓ|QK|ℓ〉n, we use equation (B.4) to rewrite

it in terms of two multiple poles.17 Then we apply (B.7) to compute the two residues as

follows:

R1 =
dn−1

dτn−1
1

(
1

(n − 1)! 〈P1 ζ1〉n−1 ×

× (K2)nN(|P1 − τ1ζ1〉 , |P1])

(
√

∆)n[P1 P2]n 〈P1 − τ1ζ1, P2〉n D(|P1 − τ1ζ1〉 , |P1])

)∣∣∣∣
τ→0

,

R2 =
dn−1

dτn−1
2

(
1

(n − 1)! 〈P2 ζ2〉n−1 ×

× (K2)nN(|P2 − τ2ζ2〉 , |P2])

(
√

∆)n[P1 P2]n 〈P2 − τ2ζ2, P1〉n D(|P2 − τ2ζ2〉 , |P2])

)∣∣∣∣
τ→0

.

where we can choose different auxiliary spinors ζ1, ζ2 for the two poles. To simplify further,

we choose |ζ1〉 = |P2〉 and |ζ2〉 = |P1〉 and use the identity [P1 P2] 〈P1 P2〉 = −∆/K2.

Finally we find

R1 =
(−1)n

(
√

∆)n
1

(n − 1)! 〈P1 P2〉n−1

dn−1

dτn−1
1

(
N(|P1 − τ1P2〉 , |P1])

D(|P1 − τ1P2〉 , |P1])

)∣∣∣∣
τ→0

, (B.8)

R2 = − (−1)n

(
√

∆)n
1

(n − 1)! 〈P1 P2〉n−1

dn−1

dτn−1
2

(
N(|P2 − τ2P1〉 , |P2])

D(|P2 − τ2P1〉 , |P2])

)∣∣∣∣
τ→0

. (B.9)

Using (B.8) and (B.9) with our original expression (B.3), we get the formula (2.9) for the

triangle coefficient. That formula may look as though it is not completely explicit because

we still need to perform a differentiation. But this is easily done in a symbolic manipulation

program. We do offer explicit formulas in appendix C.

Recall that the final result must be a rational function, so the square roots from
√

∆s

should eventually combine into polynomial expressions.

B.3 Bubble

Our derivation here parallels the one in [15], but the splitting identities are more systematic

and the final formula is now written explicitly.

First, we would like to split the denominator factors in (B.1) using the following gen-

eralization of (B.2):

∏k−1
j=1 [aj ℓ]

∏k
i=1 〈ℓ|Qi|ℓ]

=
k∑

i=1

1

〈ℓ|Qi|ℓ]

∏k−1
j=1 [aj|Qi|ℓ〉

∏k
j=1,j 6=i 〈ℓ|QjQi|ℓ〉

(B.10)

This formula is applicable when and only when all Qi and K are different. To use it, we

deform (B.1) by introducing small independent parameters si, i = 1, . . . , n + 1 and a real

null vector η.

G(λ)
∏n+k

j=1 [aj ℓ]

〈ℓ|K|ℓ]
∏n+1

i=1 〈ℓ|K + siη|ℓ]
∏k

p=1 〈ℓ|Qp|ℓ]
(B.11)

17Throughout the rest of this derivation, we drop the subscript s to avoid cluttering the formulas.
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The final result will be recovered by taking the limit si → 0.

Now we can apply (B.10) to (B.11) to find the following expression:

n+1∑

i=1

1

〈ℓ|K|ℓ] 〈ℓ|K + siη|ℓ]
G(λ)

∏n+k
j=1 [aj|K + siη|ℓ〉

∏n+1
q=1,q 6=i 〈ℓ|(K+sqη)(K + siη)|ℓ〉∏k

p=1 〈ℓ|Qp(K + siη)|ℓ〉
(B.12)

+
k∑

i=1

1

〈ℓ|K|ℓ] 〈ℓ|Qi|ℓ]
(G(λ)

∏n+k
j=1 [aj |Qi|ℓ〉

∏n+1
q=1 〈ℓ|(K + sqη)Qi|ℓ〉

∏k
r=1,r 6=i 〈ℓ|QrQi|ℓ〉

(B.13)

We can see that the si → 0 limit is smooth in the second line, resulting in terms of the

form Fi(λ)/(〈ℓ|K|ℓ] 〈ℓ|Qi|ℓ]). We know from [8] that these terms yield pure logarithms, in

this case for the triangle integrals associated with momenta K and Ki. So we restrict our

attention to the first line, (B.12). Rewrite it as

n+1∑

i=1

1

〈ℓ|K|ℓ] 〈ℓ|K + siη|ℓ]
G(λ)

∏n+k
j=1 [aj|K + siη|ℓ〉

〈ℓ|Kη|ℓ〉n
∏n+1

q=1,q 6=i(si − sq)
∏k

p=1 〈ℓ|Qp(K + siη)|ℓ〉

Now we can must take the limit si → 0 carefully. We find that the bubble coefficient is

n∑

q=0

(−1)q

q!

dqBn,n−q(s)

dsq

∣∣∣∣
s=0

, (B.14)

where we have defined the function

Bn,t(s) ≡
〈ℓ|η|ℓ]t

〈ℓ|K|ℓ]2+t

G(λ)
∏n+k

j=1 [aj |K + sη|ℓ〉
〈ℓ|ηK|ℓ〉n∏k

p=1 〈ℓ|Qp(K + sη)|ℓ〉
. (B.15)

The fact that (B.14) represents the bubble coefficient can be proved by induction. The case

n = 0 is trivial. Assume that it is true for n, and let us now introduce a single parameter

s̃ to rewrite (B.11) as

G(λ)
∏n+k+1

j=1 [aj ℓ]

〈ℓ|K|ℓ]n+2 〈ℓ|K + s̃η|ℓ]∏k
p=1 〈ℓ|Qp|ℓ]

. (B.16)

We now treat the factor 〈ℓ|K + s̃η|ℓ] on the same footing as 〈ℓ|Qp|ℓ] and apply the result

for n. The bubble contribution can be expressed as a sum of two terms I1 and I2. The

first term is

I1 =
1

〈ℓ|K|ℓ] 〈ℓ|K + s̃η|ℓ]
G(λ)

∏n+k+1
j=1 [aj |K + s̃η|ℓ〉

〈ℓ|K(K + s̃η)|ℓ〉n+1∏k
p=1 〈ℓ|Qp(K + s̃η)|ℓ〉

=
(−1)n+1

s̃n+1

(
∑

t

(−1)ts̃t 〈ℓ|η|ℓ]t

〈ℓ|K|ℓ]t+2

)
G(λ)

∏n+k+1
j=1 [aj |K + s̃η|ℓ〉

〈ℓ|ηK|ℓ〉n+1∏k
p=1 〈ℓ|Qp(K + s̃η)|ℓ〉

After taking the s̃ → 0 limit, we have

I1 =

n+1∑

a=0

n+1−a∑

t=0

(−1)n+1+t

s̃n+1−t−aa!

daBn+1,t(s̃ = 0)

ds̃a
, (B.17)
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where Bn,t(s) is defined by (B.15).

The second contribution is

I2 =

n∑

q=0

(−1)q

q!

dqB̃n,n−q(s = 0)

dsq
,

where

B̃n,t(s) ≡ 〈ℓ|η|ℓ]t

〈ℓ|K|ℓ]2+t

G(λ)
∏n+k+1

j=1 [aj|K + sη|ℓ〉
〈ℓ|ηK|ℓ〉n 〈ℓ|(K + s̃η)(K + sη)|ℓ〉∏k

p=1 〈ℓ|Qp(K + sη)|ℓ〉

=
1

(s̃ − s)
Bn+1,t(s). (B.18)

We must take the s → 0 limit before s̃ → 0, so first we substitute

dqB̃n,n−q(s)

dsq

∣∣∣∣∣
s=0

=

q∑

b=0

q!

(q − b)!s̃1+b

dq−b

dsq−b
Bn+1,t(s = 0)

to find

I2 =
n∑

q=0

q∑

b=0

(−1)q

(q − b)!s̃1+b

dq−b

dsq−b
Bn+1,n−q(s = 0),

or equivalently,

I2 =

n∑

a=0

n−a∑

t=0

(−1)n−t

a!s̃1+n−t−a

da

dsa
Bn+1,t(s = 0) (B.19)

Now it is easy to see that I1 + I2 is nonzero only if a + t = n + 1. Therefore we can write

I1 + I2 =

n+1∑

a=0

(−1)a

a!

da

dsa
Bn+1,n+1−a(s = 0), (B.20)

and thus we have proved the formula (B.14) for n + 1.

Now that we have established that the bubble coefficient comes from (B.14) with the

definition (B.15), we need to identify the poles and find the residues.

Rewrite the integrand (B.14) as a total derivative by using

[ℓ dℓ]Bn,t(s) = [dℓ ∂ℓ]

(
G(λ)

(t + 1)

〈ℓ|η|ℓ]t+1

〈ℓ|K|ℓ]t+1

∏n+k
j=1 [aj |K + sη|ℓ〉

〈ℓ|ηK|ℓ〉n+1∏k
p=1 〈ℓ|Qp(K + sη)|ℓ〉

)

Now let us specialize to the integrand of (1.5), so that G(λ) is constant and [aj | = 〈ℓ|Rj |.
Now we define18

Bn,t(s) ≡
1

(t + 1)

〈ℓ|η|ℓ]t+1

〈ℓ|K|ℓ]t+1

∏n+k
j=1 〈ℓ|Rj(K + sη)|ℓ〉

〈ℓ|ηK|ℓ〉n+1∏k
p=1 〈ℓ|Qp(K + sη)|ℓ〉

(B.21)

18The Bn,t(s) is the splitting result while Bn,t(s) is after writing into total derivative, i.e.,Bn,t(s) =

[deλ ∂eλ
]Bn,t(s).
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Here it is important that η be completely generic, so that there are no accidental degen-

eracies. For an alternative approach, see Subsection B.3.1. There are three kinds of poles.

The first, at ℓ = η, has no residue because the numerator factor 〈ℓ|η|ℓ]t+1 becomes zero.

The second, at |ℓ〉 = K|η], is a multiple pole of the type discussed in B.2, so we see that

its residue is (2.11). The last kind of pole is from the factor 〈ℓ|Qr(K + sη)|ℓ〉. Here we

perform a series expansion in the parameter s, which we will ultimately set to zero. The

expansion is

1

〈ℓ|Qr(K + sη)|ℓ〉 =
∑

a=0

(−s)a
〈ℓ|Qrη|ℓ〉a

〈ℓ|QrK|ℓ〉a+1 . (B.22)

The residue is then B(r;a;1)
n,t (s) − B(r;a;2)

n,t (s), with the definitions given in (2.12) and (2.13).

Combining these contributions, we find that the sum of the residues at poles of Bn,t(s)

is

B(0)
n,t(s) +

k∑

r=1

∑

a=0

(−s)a
(
B(r;a;1)

n,t (s) − B(r;a;2)
n,t (s)

)
. (B.23)

Feeding (B.23) into (B.14) and simplifying the result gives us our final expression for

the bubble coefficient, (2.10).

B.3.1 A special choice of η

In this appendix, we describe the consequences of choosing η to coincide with a null external

momentum. Suppose that K2
1 = 0 and we take η = K1. This choice may be convenient

for small examples worked by hand, but we emphatically recommend choosing a generic η

wherever possible.

The reason that such a special choice of η presents a problem is the following.

From (1.4), we can see that

〈ℓ|Q1K|ℓ〉 = −(1 − 2z) 〈ℓ|K1K|ℓ〉 = −(1 − 2z) 〈ℓ|ηK|ℓ〉

Therefore, in the expression (B.21), the poles from 〈ℓ|ηK|ℓ〉 and 〈ℓ|Q1(K + sη)|ℓ〉, will

overlap, and the way we read off their residues should be modified respectively.

In this special case, it is easy to see that

1

〈ℓ|Q1(K + sη)|ℓ〉 =
∑

a=0

(−s)a
〈ℓ|Q1η|ℓ〉a

〈ℓ|Q1K|ℓ〉a+1 = − 1

〈ℓ|ηK|ℓ〉
1

(1 − 2z) − sz (2K·η)
K2

Now instead of (B.21), we have

Bn,t(s) ≡ − 1

(1 − 2z) − sz (2K·η)
K2

1

(t + 1)

〈ℓ|η|ℓ]t+1

〈ℓ|K|ℓ]t+1

∏n+k
j=1 〈ℓ|Rj(K + sη)|ℓ〉

〈ℓ|ηK|ℓ〉n+2∏k
p=2 〈ℓ|Qp(K + sη)|ℓ〉

.

(B.24)
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Continuing this way, we find

B(0)
n,t(s) ≡ − dn+1

dτn+1

(
1

(1 − 2z) − sz (2K·η)
K2

[η|η̃K|η]−n−1

(t + 1)(n + 1)!

(
(2η · K)

K2

)t+1

∏n+k
j=1 〈ℓ|Rj(K + sη)|ℓ〉

〈ℓ η〉n+2∏k
p=2 〈ℓ|Qp(K + sη)|ℓ〉

||ℓ〉→|K−τ eη|η]

)∣∣∣∣∣
τ→0

, (B.25)

B(r;a;1)
n,t (s) ≡ 1

(1 − 2z) − sz (2K·η)
K2

(−1)a
√

∆r
a+1

a! 〈Pr,1 Pr,2〉a
da

dτa

(
1

(t + 1)

〈ℓ|η|ℓ]t+1

〈ℓ|K|ℓ]t+1

×
〈ℓ|Qrη|ℓ〉a

∏n+k
j=1 〈ℓ|Rj(K + sη)|ℓ〉

〈ℓ|ηK|ℓ〉n+2∏k
p=2,p 6=r 〈ℓ|Qp(K + sη)|ℓ〉

)∣∣∣∣∣
|ℓ]=|Pr,1],|ℓ〉=|Pr,1〉−τ |Pr,2〉

(B.26)

B(r;a;2)
n,t (s) ≡ 1

(1 − 2z) − sz (2K·η)
K2

(−1)a
√

∆r
a+1

a! 〈Pr,1 Pr,2〉a
da

dτa

(
1

(t + 1)

〈ℓ|η|ℓ]t+1

〈ℓ|K|ℓ]t+1

×
〈ℓ|Qrη|ℓ〉a

∏n+k
j=1 〈ℓ|Rj(K + sη)|ℓ〉

〈ℓ|ηK|ℓ〉n+2∏k
p=2,p 6=r 〈ℓ|Qp(K + sη)|ℓ〉

)∣∣∣∣∣
|ℓ]=|Pr,2],|ℓ〉=|Pr,2〉−τ |Pr,1〉

(B.27)

and the coefficient is given by

C[K]n = (K2)1+n
n∑

q=0

(−1)q

q!

dq

dsq

(
B(0)

n,n−q(s) +
k∑

r=2

n∑

a=q

(
B(r;a−q;1)

n,n−a (s) − B(r;a−q;2)
n,n−a (s)

))∣∣∣∣∣
s=0

.

(B.28)

where the definitions of the functions B must be taken from (B.25), (B.26) and (B.27).

C. Closed forms for triangle coefficients

We have given the general expression for coefficients of triangles as a formula involving a

multiple derivative (2.9). We can also carry out the differentiation explicitly. For practical

purposes, we need to consider only cases with n ≤ 2.

When n ≤ −2, the contribution is simply zero.

When n = −1, there is no derivative, so the result is just

C[Qs,K]n=−1 =
1

2

( ∏k−1
j=1 〈Ps,1|Rj |Ps,2]

∏k
t=1,t6=s 〈Ps,1|Qt|Ps,2]

)
(C.1)

When n = 0 it is given by

C[Qs,K]n=0 =
K2

2∆s





∏k
j=1 〈Ps,1|Rj |Ps,2]

∏k
t=1,t6=s 〈Ps,1|Qt|Ps,2]




k∑

j=1

(2Qs · K)(2Rj · Qs) − 2Q2
s(2Rj · K)

〈Ps,1|Rj |Ps,2]

−
k∑

t=1,t6=s

(2Qs · K)(2Qt · Qs) − 2Q2
s(2Qt · K)

〈Ps,1|Qt|Ps,2]


+ {Ps,1 ↔ Ps,2}



 (C.2)
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When n = 1 it will be

C[Qs,K]n=1 =
(K2)2

4∆2
s

{ ∏k+1
j=1 〈Ps,1|Rj |Ps,2]

∏k
t=1,t6=s 〈Ps,1|Qt|Ps,2]

× (C.3)

×






k+1∑

j=1

(2Qs · K)(2Rj · Qs) − 2Q2
s(2Rj · K)

〈Ps,1|Rj |Ps,2]

−
k∑

t=1,t6=s

(2Qs · K)(2Qt · Qs) − 2Q2
s(2Qt · K)

〈Ps,1|Qt|Ps,2]




2

+

k+1∑

j=1

−[(2Qs · K)(2Rj · Qs) − 2Q2
s(2Rj · K)]2 + 2Q2

sK
2 〈Ps,1|Rj |Ps,2] 〈Ps,2|Rj |Ps,1]

〈Ps,1|Rj|Ps,2]
2

−
k∑

t=1,t6=s

−[(2Qs · K)(2Qt · Qs) − 2Q2
s(2Qt · K)]2 + 2Q2

sK
2 〈Ps,1|Qt|Ps,2] 〈Ps,2|Qt|Ps,1]

〈Ps,1|Qt|Ps,2]
2

+{Ps,1 ↔ Ps,2}
}

(C.4)

For n = 2 the result is

C[Qs,K]n=2 =
(K2)3

12∆3
s

{ ∏k+2
j=1 〈Ps,1|Rj |Ps,2]

∏k
t=1,t6=s 〈Ps,1|Qt|Ps,2]

(A3 + 3AB + C) + {Ps,1 ↔ Ps,2}
}

, (C.5)

where we have defined

A =

k+2∑

j=1

(2Qs · K)(2Rj · Qs) − 2Q2
s(2Rj · K)

〈Ps,1|Rj |Ps,2]

−
k∑

t=1,t6=s

(2Qs · K)(2Qt · Qs) − 2Q2
s(2Qt · K)

〈Ps,1|Qt|Ps,2]

B = −
k+2∑

j=1

[(2Qs · K)(2Rj · Qs) − 2Q2
s(2Rj · K)]2 + 2Q2

sK
2 〈Ps,1|Rj|Ps,2] 〈Ps,2|Rj|Ps,1]

〈Ps,1|Rj |Ps,2]
2

+
k∑

t=1,t6=s

[(2Qs · K)(2Qt · Qs) − 2Q2
s(2Qt · K)]2 − 2Q2

sK
2 〈Ps,1|Qt|Ps,2] 〈Ps,2|Qt|Ps,1]

〈Ps,1|Qt|Ps,2]
2

C =

k+2∑

j=1

[(2Qs · K)(2Rj · Qs) − 2Q2
s(2Rj · K)]3 − 3Q2

sK
2 〈Ps,1|Rj |Ps,2] 〈Ps,2|Rj|Ps,1]

〈Ps,1|Rj |Ps,2]
2

2[(2Qs · K)(2Rj · Qs) − 2Q2
s(2Rj · K)]

〈Ps,1|Rj |Ps,2]

−
k∑

t=1,t6=s

2[(2Qs · K)(2Qt · Qs) − 2Q2
s(2Qt · K)]

〈Ps,1|Qt|Ps,2]

[(2Qs · K)(2Qt · Qs) − 2Q2
s(2Qt · K)]2 − 3Q2

sK
2 〈Ps,1|Qt|Ps,2] 〈Ps,2|Qt|Ps,1]

〈Ps,1|Qt|Ps,2]
2
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